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Abstract A previous report has described the crystal
structure of glitter, which is a dense 3-,4-connected net
composed of ethylenic columns that run parallel to the c-
axis of the unit cell. Such a structure invites speculation
as to its relative stiffness along that axis. A semiempirical
expression due to Cohen was used in a previous com-
munication to estimate its zero-pressure bulk modulus.
This estimate exceeds that of any known material at
440 GPa. Further, by treating the ethylenic units as
harmonic springs, a correction was computed for the
elastic deformation of the carbon–carbon double bonds
along the c-axis. This correction is on the order of
300 GPa for deformations of the double bonds of
approximately 0.1 Å. The present communication treats
the ethylenic units along the c-axis of glitter as anhar-
monic springs obeying a Morse potential and a Morse’s
law force. Within the anharmonic approximation, at
modest bond length deformations, x¢, the bulk modulus
at pressure of the glitter lattice exceeds 1 TPa.

Keywords Glitter lattice Æ Anharmonic compression Æ
Elastic modulus Æ Bulk modulus

Introduction

Earlier reports of the glitter structure have focused on its
crystal structure and electronic band structure [1,2].
These reports have shown that glitter is a good metal
with extensive p and p* band dispersions about the
Fermi level due to through-space pr and pspiro interac-
tions [2]. Band calculations on a CN2 structure patterned
on the glitter lattice indicate that this structure will be a

wide band gap (@ 4 eV) insulator, it will therefore be
transparent. There are obviously many other possible
glitter phases containing B, C, N, Al, Si, P, and other
elements that are candidate structures for study. The
present report concentrates on the mechanical properties
of the parent carbon glitter phase.

The bulk modulus, B, of the glitter lattice is first
considered in terms of the zero-pressure bulk modulus,
B0, which can be determined very accurately through a
semiempirical expression developed by Cohen [3]. This
analysis indicates that the zero-pressure bulk modulus of
glitter is nearly the same as that in the diamond lattice.
Next a correction is applied to B0 for compression and
consequent volume contraction in order to obtain B, the
bulk modulus at pressure. This approximate correction
is made in terms of the deformation of the stiffest bonds
in the glitter unit cell, the two carbon–carbon double
bonds. Bond-angle deformations and the deformation of
the carbon–carbon single bonds within the unit cell are
neglected in order to calculate the value of the bulk
modulus at pressure, B.1

In the first case, this correction term involves treating
the carbon–carbon double bonds as harmonic springs. A
simple expression is proposed based upon dimensional
analysis for correcting the zero-pressure bulk modulus
and the results are tabulated for deformations up to a
0.15 Å deformation of each carbon–carbon double
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1The carbon-carbon single bond is about half as stiff (k=450 N/m)
as the carbon–carbon double bond (k=960 N/m), therefore the
single bond will be expected to deform more easily under an ap-
plied force than the double bond. The compression of the carbon–
carbon single bonds in the unit cell of glitter leads to a contraction
of the lattice parameter a. Because of the contraction of the lattice
parameter a, the force directed along the c-axis in glitter will be
distributed over a smaller area, in the model described in this paper.
This contraction will result in an increase in the correction stress–
elastic modulus computed for the glitter lattice when taking into
account the simultaneous compression of the carbon–carbon single
and double bonds in the unit cell. A separate communication will
consider the more complicated case of calculating the stress–elastic
modulus on glitter from the simultaneous compression of the car-
bon–carbon single and double bonds in the unit cell
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bond. In the second case, all assumptions are identical,
except that the carbon–carbon double bonds are treated
as anharmonic springs obeying a Morse’s law force [4].
In the next several sections, some preliminary features of
the glitter structure will be addressed.

Crystal structure of glitter

The original report of the glitter structure described the
crystal structure in terms of the molecular structure of
the 1,4-cyclohexadiene molecule, as shown in Fig. 1 [5–
7] The crystal structure of the glitter lattice is shown in
Fig. 2. Based upon the tetrahedral vertices being locally
of D2d symmetry, the lattice belongs to space group P42/
mmc, # 131.

In 1,4-cyclohexadiene, the trigonal and tetrahedral
carbon atoms are both distorted from ideality. The
previous reports on glitter have been based upon a 1,4-
cyclohexadiene model molecule with a C=C–C bond

angle of 123� and a trigonal C–C–C bond angle of 114�,
a C–C bond length of 1.51 Å and a C=C bond length of
1.35 Å. From these parameters, all the unit cell contents
of glitter can be computed, these unit cell contents were
implied from the molecular parameters in the original
report on glitter [1]. The tetrahedral C–C–C bond angle
is approximately 107�. The fractional crystallographic
coordinates of the carbon atoms in the unit cell of glit-
ter, based upon the 1,4-cyclohexadiene molecular
parameters, [5–7] are shown in Table 1. Also indicated
in Table 1 are the fractional crystallographic coordi-
nates for the hypothetical B2C and CN2 lattices that are
isostructural with glitter [1,2]. The lattice parameters for
glitter are given as, a=2.53 Å and c=5.98 Å, the den-
sity in this configuration is 3.12 g cm-3.

A modified crystal structure in which all six tetrahe-
dral C–C–C bond angles are set equal to the ideal tet-
rahedral angle of about 109.47� is possible, the trigonal
C–C–C angles are thus forced to that ideal angle and the
trigonal C=C–C angle is 125.25�. Such a lattice may
exist based upon the probable structure of another
hydrocarbon fragment that can be carved out of the
glitter crystal structure, the molecule 1,3,5,7-tetrameth-
ylenecyclooctane. This molecule was first synthesized in
1959 by Benson and Lindsey [8]. The structure of the
hydrocarbon is shown in Fig. 3.

1,3,5,7-Tetramethylenecyclooctane will likely exhibit
the effect of endo-spiroconjugation described previously
[2]. It is not clear that sites of endo-spiroconjugation
should be exactly tetrahedral, but extended Hückel cal-
culations show that they should be approximately in the
shape of a tetrahedron for maximum electronic stability
[2]. Therefore, an alternative lattice may be envisioned
that may maximize the effect of endo-spiroconjugation,
the tetrahedral glitter lattice. The lattice parameters of
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Fig. 1 The 1,4-cyclohexadiene molecule

Fig. 2 Crystal structure of glitter lattice

Table 1 Fractional crystallographic coordinates of glitter based
upon the 1, 4-Cyclohexadiene molecule, CN2 and B2C

Atom# x/a y/b z/c a (Å) c (Å)

(a) 1, 4-Cyclohexadiene molecule
1 0 0 0 2.532 5.988
2 ½ 0 0.1372
3 ½ 0 0.3626
4 0 0 ½
5 0 ½ 0.6374
6 0 ½ 0.8629
(b) CN2

1 0 0 0 2.470 6.102
2 ½ 0 0.1312
3 ½ 0 0.3689
4 0 0 ½
5 0 ½ 0.6314
6 0 ½ 0.8691
(c) B2C
1 0 0 0 2.616 6.840
2 ½ 0 0.1242
3 ½ 0 0.3756
4 0 0 ½
5 0 ½ 0.6240
6 0 ½ 0.8754
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this cell are, a=2.47 Å and c=6.19 Å, its density is
3.20 g cm�3. The fractional crystallographic coordinates
are shown in Table 2. The calculations on the mechan-
ical properties of glitter in the present report assume that
the lattice is based upon the geometry of the 1,4-cyclo-
hexadiene molecule, [5–7] as in the two previous reports
[1,2].

Finally, it is instructive to point out the similarity of
glitter to an actual mineral structure-type, that of
Cooperite, PtS or PdO [9]. Figure 4 shows the structure
of Cooperite, which has the space group P42/mmc, like
glitter. In Fig. 5, glitter is shown in an alternative unit-
cell setting that exemplifies the similarity of the two
structures. One simply substitutes trigonal planar atom
pairs for square planar vertices to generate the glitter
structure from the Cooperite structure.

Topology of the glitter structure

As pointed out by Wells, crystal structures can be
characterized not only by their symmetry (i.e., their
space group), but they also can be characterized topo-
logically by their Schläfli symbols (n, p) [10–23]. These
symbols represent the average polygonality within the
unit cell, n, and the average connectivity within the unit
cell, p. In fact, because more than one given structure
may have the same topology but different symmetry, it
has been pointed out that the Schläfli symbols may have
a deeper significance than that given by symmetry con-
siderations alone.

These topological characterizations are based upon
Euler’s equation relating the number of edges, E, to
the number of faces, F, and the number of vertexes, V,
in convex polyhedra, as shown in Eq. 1 [24]. By
substituting the identities, nF=2E and pV=2E into
Eq 1, we obtain Eq. 2. Equation 2 relates the sec-
ondary topological indexes, n and p, to the primary
topological indexes E, F, and V [10–23]. This expres-
sion is completely sound for the convex polyhedra, and
this provides the starting point for mapping out the
topological space of structures for the crystalline
materials. There are similar expressions relating n and
p, to V and F [10–23].

V� Eþ F ¼ 2 ð1Þ

1

n
� 1

2
þ 1

p
¼ 1

E
ð2Þ

For extended structures in 2- and 3-dimensions, like
graphene (6, 3) and diamond (6, 4), although one can
calculate the secondary topological indexes n and p,
their solution in terms of an Euler equation gives
infinity for the number of edges E in the 2-dimensional
graphene sheet and a negative number for E in the 3-
dimensional diamond structure. A modification of the
classical Euler equation, one that is applicable to 2-
and 3-dimensional extended structures, is evidently
needed. Still n and p are rigorously determined in all
crystalline structures where links between atoms in the
unit cell can be identified unambiguously. The map
shown in Fig. 6, due to Wells, can be used to deter-
mine the topological identity and location of all such
crystalline structures [10–23].

Interestingly, all of the fullerenes can be characterized
topologically as having connectivity of 3 and a varying
fractional polygonality that runs between 5 and 6 [25].

Fig. 4 Crystal structure of cooperite lattice

Fig. 3 The 1,3,5,7-tetramethylenecylooctane molecule

Table 2 Å Fractional crystallographic coordinates of glitter based
upon the four-connected vertexes being tetrahedral

Atom# x/a y/b z/c a (Å) c (Å)

1 0 0 0 2.466 6.184
2 ½ 0 0.1407
3 ½ 0 0.3588
4 0 0 ½
5 0 ½ 0.6402
6 0 ½ 0.8583
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Therefore n runs from just above 5 (where the Schläfli
index (5, 3) is the classical Platonic structure, the pen-
tagonal dodecahedron) to just below 6 (where the
Schläfli symbol (6, 3) is the graphene net). Therefore, the
fullerenes are a family of Archimedean polyhedra
(meaning n is fractional). The most famous member of
this family, Buckminsterfullerene, has 20 six-gons and 12
five-gons in each molecule. The Schläfli symbol for the
buckyball is therefore (55/8, 3).

The glitter lattice is part of the topological space of 3-
,4-connected networks [10–23]. These structures were
first described in connection with the crystal structures
of Pt3O4 [26] shown in Fig. 7, and the mineral phenacite,
Be2SiO4, [27] shown in Fig. 8.

One can see in Fig. 7 the identities of n and p, all the
shortest circuits in this Pt3O4 network are octagons, so
n=8. In addition, there are 3 four-connected vertexes
for every 4 three-connected vertexes (i.e., the Pt atoms
are in square-planar coordination and the O atoms are
in trigonal coordination). Therefore, the averaged index

p=3.4285... It is interesting here that the connectivity is
a continued fraction, and because the polygonality is
integer and the connectivity is fractional, the Schläfli
symbol for the Pt3O4 network corresponds to that of the
Catalan polyhedra. It is a Catalan structure.

Figure 8 indicates a more complex network, the
phenacite structure-type. There are several isostructural
systems based upon the phenacite network. The first to
be identified was Be2SiO4. There are apparently 3 six-
gons for every 2 eight-gons in the unit of pattern, leading
to a polygonality, n, equal to 64/5. Thus the polygonality
is a rational number. The connectivity, p, is 3.4285... the
same continued fraction as was found in the connectivity
of the Pt3O4 structure. They both have 4 three-connected
vertexes and 3 four-connected vertexes in the unit
of pattern. Because both the polygonality, n, and the
connectivity, p, are fractional in the phenacite structure-
type, it is classified topologically as ‘‘irregular,’’ or
Wellsean [2].

Fig. 5 Glitter lattice in alternative setting

Fig. 6 Topology map of regular structures

Fig. 7 Crystal structure of Pt3O4 lattice
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Evidently, glitter is one of virtually innumerable 3-,4-
connected nets, many of which were first able to see the
light of day through the enumerative work of Wells [10–
23]. It was Wells who first identified the topological
space of ‘‘irregular’’ structures. The ‘‘irregular’’ struc-
tures were discovered through his exploration of the
space of 3-,4-connected nets. Such structures are there-
fore called Wellsean structures [2]. Inspection of Fig. 2
indicates that there is 1 six-gon for every 1 eight-gon in
the unit of pattern of glitter. The polygonality is there-
fore 7 in this network. Similarly, there are 2 three-con-
nected vertexes and 1 four-connected vertex in the unit
of pattern, the connectivity is 31/3. Glitter is therefore a
Wellsean structure, with a Schläfli symbol (7, 31/3).

Finally, there are an infinite series of hypothetical 3-
,4-connected networks, the graphite-diamond hybrids,
which consist of fusing graphene sheets onto open-va-
lence tetrahedral bonds in various crystallographic
planes, (hkl), of a diamond lattice. The electronic
structure of these networks has been studied [28].
Topologically, these structures are Catalan with the
connectivity, p, running between 3 and 4, and a uniform
polygonality, n, given by 62. It should be noted that
glitter, with a polygonality of 7, is not a graphite–dia-
mond hybrid. It is a topologically distinct structure
containing eight-gons and six-gons.

Synthesis of glitter

In 1959, Benson and Lindsey investigated condensation
reactions of the hydrocarbon allene and discovered
several heretofore-unknown hydrocarbon oligomers of
allene [8]. Of particular interest for the eventual syn-
thesis of glitter was the identification of a tetramer of
allene shown in Fig. 3. The reactions were carried out at
140�C using pure liquid allene with a divalent Ni catalyst
present. Had the researchers used 1,1-dimethylallene

instead of allene, and the reaction proceeded in the
identical way, they would have produced the tetramer
molecule 9,9,10,10,11,11,12,12-octamethyl-1,3,5,7-te-
tramethylenecyclooctane instead. This latter molecule is
precisely one unit cell of glitter, it is a hydrocarbon
fragment of the unit cell of the glitter lattice.

In their work, Benson and Lindsey report that the
tetramer is remarkably stable and does not decompose
readily. In contrast, a trimer produced as a by-product
in such reactions was remarkably unstable and reacted
readily. No crystal structure was obtained for the tet-
ramer, but a cycloaddition reaction occurred when the
tetramer was mixed with tetracyanoethylene in tetrahy-
drofuran. This cycloaddition reaction indicated that
there were through-space interactions of the adjacent
double bonds. The reaction suggests that there is some
degree of endo-spiroconjugation in the molecule, and
may explain its great stability.

As glitter is a 3-,4-connected net, it is clear that it
could likely be synthesized at conditions of pressure
(P) and temperature (T) at which trigonal carbon and
tetrahedral carbon atoms coexist. Such PT conditions
exist in the neighborhood of the graphite–diamond
phase boundary. It is not clear if an industrial scale,
opposed anvil belt apparatus, like that used to make
synthetic diamond, could be operated at the narrow
range of temperatures and pressures along the phase
boundary of graphite–diamond [29]. But evidently,
from the synthesis of the remarkably stable tetramer,
the allene condensation product 1,3,5,7-tetramethyl-
enecyclooctane, there is a driving force for the tetra-
mer to form and settle into a remarkably stable state.
It is possible that a similar spontaneous self-assembly
reaction could occur for the glitter lattice somewhere
on the graphite–diamond phase boundary. One might
therefore reasonably expect that there might be a
thermodynamic stability field for glitter in the phase
diagram of C. Table 3 indicates the theoretical dif-
fraction pattern for glitter, based upon the parameters
of the model molecule 1,4-cyclohexadiene. Also in-
cluded in this table are the theoretical diffraction
patterns for the B2C and CN2 lattices isostructural
with glitter. All 3 theoretical diffraction patterns rep-
resent corrections to previously published data [1,2].

Fig. 8 Crystal structure of
Be2SiO4 lattice

2Therefore the graphite-diamond hybrids, being Catalan networks
composed of various ratios of three-connected and four-connected
points, exclusively in six-gons, represent a interesting contrast to
the fullerenes, these being Archimedean networks composed of
various ratios of five-gons and six-gons and held together by three-
connected points.
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Elasticity theory: recent developments

Cohen has taken the lead of investigators dedicated to
understanding the issues of strength of materials and
their ultimate stiffness or hardness. In a series of papers
written from the 1980’s onward [30], he has made a
successful attempt to simplify the mathematical lan-
guage and principles through which elasticity and elastic
properties of materials are understood by people work-
ing in the physical sciences. At the same time, Cohen has
focused on providing a more intuitive basis through
which people can understand elasticity and through
which they can calculate elastic properties of various
structures.

One of the most important contributions he has
made in this area is the fitting of elasticity data on the
volume modulus of elasticity of tetrahedral solids, the
so-called diamond-like materials, to a semiempirical
formula in the average bond distance in the unit cell,
d, to the inverse 31/2 power. In doing so, he simplified
the problem of calculating the bulk modulus for cubic
crystals from a formula involving 3 elastic constants to
one based solely on the empirical parameter of aver-
age bond distance in the unit cell, d, and degree of
ionicity, I, in the chemical bonds in the structure.
Furthermore, by modifying this initial formula, which
was applicable to tetrahedral solids, for application to
solids with coordination numbers, Nc, different than 4,
Cohen extended its applicability to other kinds
of structures including non-cubic unit cells like his
prototype superhard material b-C3N4, which is a 3-,4-
connected net lying in the hexagonal space group P63/m.
[31–33]

The 21 elastic constants necessary to derive the
elastic properties of anisotropic crystals, involving the
stress–strain formalism, represent an important physi-
cal theory that may ultimately prove to be the most
accurate formulation of elasticity theory that is possi-
ble. However, it can be seen that the calculation of 21
independent elastic parameters, even when considering
simplifications due to symmetry, is quite a formidable
and a decidedly counterintuitive way to view elasticity
in materials.

As a considerable simplification of these ideas, we
propose an intuitive model of the dynamic elasticity, in
the spirit of the work of Cohen, which involves modeling
covalent materials in terms of harmonic (or anharmonic)
potentials between atom pairs, and the projection of the
resultant elastic chemical bond deformation forces
across a set of 3 mutually orthogonal pairs of lattice
planes within the unit cell of the material. The funda-
mental and basic approximation of the model is to define
the stress–elastic modulus as equivalent to a force -
density integral, where the force is given by the sum
of the elastic chemical bond deformations taking place
inside the unit cell, and the volume parameter reflects the
deformations taking place in the chemical bonds of the
unit cell.

The formalism defined in this way generates a term in
the zero-pressure bulk modulus, the static volume
modulus of elasticity, as the constant of integration, and

Table 3 Calculated lattice spacings and relative intensities for dif-
fraction from the glitter lattice, CN2 lattice and B2C lattice with Cu
Ka radiation (k=1.542 Å) [47, 48]

h k l d(hkl) Å Sin h(hkl) h(hkl) � I(F·F)

(a) Glitter lattice
1 0 0 2.530 0.3047 17.74 144
0 0 1 5.980 0.1289 7.41 0
1 1 0 1.788 0.4312 25.54 144
1 0 1 2.330 0.3309 19.32 332
1 1 1 1.713 0.4500 26.74 0
2 0 0 1.265 0.6095 37.55 1296
0 0 2 2.990 0.2578 14.94 69
2 1 0 1.131 0.6816 42.97 144
2 0 1 1.237 0.6232 38.55 0
1 0 2 1.931 0.3992 23.53 144
1 1 2 1.535 0.5022 30.15 246
1 2 1 1.111 0.6939 43.94 332
2 2 0 0.894 0.8624 59.59 1296
2 0 2 1.165 0.6618 41.44 69
2 1 2 1.058 0.7287 46.78 144
2 2 1 0.884 0.8721 60.70 0
2 2 2 0.857 0.8996 64.11 69
3 0 0 0.843 0.9145 66.13 144
0 0 3 1.993 0.3868 22.76 0
(b) CN2 lattice
1 0 0 2.470 0.3121 18.18 144
0 0 1 6.100 0.1263 7.25 0
1 1 0 1.747 0.4412 26.18 256
1 0 1 2.289 0.3367 19.67 422
1 1 1 1.679 0.4591 27.32 0
2 0 0 1.235 0.6242 38.62 1600
0 0 2 3.050 0.2527 14.63 97
2 1 0 1.105 0.6976 44.23 144
2 0 1 1.210 0.6371 39.57 0
1 0 2 1.919 0.4017 23.68 144
1 1 2 1.515 0.5088 30.58 200
1 2 1 1.087 0.7091 45.16 422
2 2 0 0.873 0.8830 62.00 1600
2 0 2 1.144 0.6738 42.36 97
2 1 2 1.038 0.7426 47.95 144
2 2 1 0.864 0.8922 63.15 0
2 2 2 0.839 0.9188 66.75 97
3 0 0 0.823 0.9366 69.48 144
0 0 3 2.033 0.3791 22.27 0
(c) B2C lattice
1 0 0 2.620 0.2942 17.10 144
0 0 1 6.840 0.1127 6.47 0
1 1 0 1.852 0.4162 24.59 64
1 0 1 2.446 0.3151 18.36 215
1 1 1 1.788 0.4311 25.53 0
2 0 0 1.310 0.5884 36.04 1024
0 0 2 3.420 0.2254 13.02 109
2 1 0 1.171 0.6583 41.17 144
2 0 1 1.286 0.5994 36.82 0
1 0 2 2.079 0.3708 21.76 144
1 1 2 1.628 0.4735 28.26 183
1 2 1 1.154 0.6680 41.91 215
2 2 0 0.926 0.8325 56.35 1024
2 0 2 1.223 0.6303 39.07 109
2 1 2 1.108 0.6957 44.08 144
2 2 1 0.917 0.8406 57.20 0
2 2 2 0.894 0.8623 59.57 109
3 0 0 0.873 0.8830 62.00 144
0 0 3 2.280 0.3381 19.76 0
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a power series in the attendant strain on the unit cell in
each of the three mutually orthogonal crystallographic
directions. Physically, the zero-pressure bulk modulus
can be represented as a function of ‘‘k/a’’ where k is the
force constant of the bonds in the unit cell, and a is the
corresponding lattice parameter. The identification of
the ratio ‘‘k/a’’ as being related to the zero-pressure bulk
modulus, draws a connection with the work of Feynman
on elasticity of materials [34]. Furthermore, the terms to
1st order, given by ‘‘kx¢/a2 (where x¢ is the elastic
chemical bond deformation parameter and a2 is the area
of the crystalline plane normal to that chemical bond
deformation) take account, explicitly, of the contribu-
tion to the elasticity of crystalline materials from the
deformations of the bonds that take place as a result of
applied stresses. The formalism therefore leads to 2
lateral dynamic components and an axial component of
the elasticity. In this formalism, one assumes a particular
orientation of the unit cell in Cartesian space. This re-
duces the complexity of calculating 21 independent
elastic constants for a given anisotropic crystalline
material, to the problem of writing down 3 independent
dynamic elastic parameters for the unit cell, in addition
to the term in the zero-pressure elasticity, the constant in
the strain integration.

Overall, the theory presented in this paper extends the
intuitive ideas of Cohen and Feynman on elasticity, as
proposed for simplifying the computation of static zero-
pressure elasticity [30], into the realm of the dynamic
elasticity, and the corresponding elastic deformations of
the unit cell of a material. The theory presented in this
paper describes computation of the elasticity given along
only 1 of 3 possible independent, mutually orthogonal
crystallographic directions. Ultimately, it is the intention
of the authors to extend these ideas to all three crystal-
lographic axes of a unit cell of a material. With this
introduction, the next several sections present the basic
ideas of our elasticity model, in 1 dimension, with both
harmonic and anharmonic axial pair potentials assumed
for the chemical bonds in the computation of the elastic
properties of glitter.

Harmonic compression

As described above, the present communication focuses
on the mechanical properties of glitter, specifically the
volume modulus of elasticity (the bulk modulus). The
first indication of the stiffness of glitter was provided by
analysis with the semiempirical equation developed by
Cohen for the zero-pressure bulk modulus of materials
[3]. This semiempirical equation was obtained by a
judicious fit of available experimental data on bulk
moduli of structures adopting the diamond lattice (tet-
rahedral solids). It is shown as Eq. 3 below:

B0 ¼
1972� 220I

dh i3:5
Nch i
4

ð3Þ

In Eq. 3, d is the weighted average bond length in the
unit cell, Nc is the weighted average coordination num-
ber (the connectivity, p) in the unit cell, and I is the
ionicity in the structure (a parameter dependent on the
weighted average difference in electronegativity of the
elements in the unit cell). One can see immediately that
the zero-pressure bulk modulus is strongly dependent on
the weighted average bond length in the unit cell. The
shorter the chemical bonds, the higher the zero-pressure
bulk modulus.

From the perspective of a relation developed from
spectroscopic research on diatomic molecules, Badger’s
rule, shown as Eq. 4, the Cohen formula is physically
reasonable [35, 36]. Badger’s rule states that the force
constant for a given chemical bond, k in Nm�1, is pro-
portional to the inverse cube of the corresponding in-
ternuclear distance, d in m.

k d� C1ð Þ3 ¼ C2 ð4Þ
The constants in the equation, C1 and C2, make the
relation exact and dimensionally consistent, and they
differ depending on the row of the Periodic Table from
which the atoms are taken to be bonded. Therefore,
Cohen’s formula may be thought of as approximately
relating the mean force constant of the chemical bonds
in a unit cell of a given structure, to the zero-pressure
bulk modulus, B0, of that structure. For smaller values
of d, to a power of approximately 3, the force constant
becomes correspondingly larger and the chemical
bonds in the unit cell are stiffer. Interestingly, empiri-
cal relations of B0 for various structures, based upon
the force constants of the bonds in the unit cell of
these structures, were first analyzed by Waser and
Pauling in 1950 [37].

If the parameters of the diamond structure, most
importantly the bond length of 1.54 Å, are inserted into
Eq. 3, a zero-pressure bulk modulus of 435 GPa is ob-
tained. This represented the zenith in volume stiffness of
crystalline materials until the publication of the glitter
structure. [1, 38] The major parameter affecting the
computed bulk modulus for the glitter lattice is the
weighted average bond length of 1.46 Å, 0.08 Å shorter

Table 4 Corrections to the zero-pressure bulk modulus, B0, from
harmonic compression of the double bonds in the glitter lattice [48]

Deformation, x¢, in m 2kx
0

a2 ; in N
m2 ; (Pa) B in GPa

�0.010 · 10�10 30.0 · 109 470
�0.020 · 10�10 60.0 · 109 500
�0.030 · 10�10 90.0 · 109 530
�0.040 · 10�10 120.0 · 109 560
�0.050 · 10�10 150.0 · 109 590
�0.060 · 10�10 180.0 · 109 620
�0.070 · 10�10 210.0 · 109 650
�0.080 · 10�10 240.0 · 109 680
�0.090 · 10�10 270.0 · 109 710
�0.100 · 10�10 300.0 · 109 740
�0.110 · 10�10 330.0 · 109 770
�0.120 · 10�10 360.0 · 109 800
�0.130 · 10�10 390.0 · 109 830
�0.140 · 10�10 420.0 · 109 860
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than the C–C single bonds in diamond. Equation 3
predicts that glitter will have a zero-pressure bulk
modulus of 440 Gpa. This is about 1 percent larger than
the zero-pressure bulk modulus in diamond.

Beyond zero-pressure, the question naturally arises as
to the corrections to B0 with compression of the unit cell
volume. In an earlier communication, a preliminary
assessment of the volume stiffness to compression of the
unit cell of glitter was made by approximating the
correction to B0 with what was probably the largest
contribution to the bulk modulus at pressure, the elastic
compression of the carbon–carbon double bonds [2].
This approximation was made under the assumption of
a harmonic potential for the carbon–carbon double
bond. Such compression would occur along virtually
any axis [hkl] of the unit cell, but the component of force
of that deformation, normal to a given crystallographic
plane of the unit cell (hkl), divided by the area of that
given crystallographic plane (hkl), here (001), which
would be a correction to B0, would approximately be
given by Eq. 14 shown below

A rigorous, and exact, derivation of the correction
term in Eq. 5 is provided by defining the volume stress–
elastic modulus, associated with the elastic deformation
of the chemical bonds in a unit cell, by the following
integral:

Elastic modulus ¼
Z

F x0ð Þ
V x0ð Þ dx

0 ð5Þ

Here we are specifying the case of uniaxial compres-
sion, where only one deformation variable, x¢, is con-
sidered as contributing to the volume stress–elastic
modulus. The other components of the volume stress–
elastic modulus, the bond angles and y¢ and z¢, are
assumed to stay fixed in this model. F(x¢) represents
the force exerted in elastic deformation. In this
approximation, it is a Hooke’s law force given by 2kx¢
cos h. V(x¢) represents the dependence of the volume
of the unit cell on the elastic deformation parameter,
x¢. From these specifications, we get the following
expression for the volume stress in glitter based upon
the exclusive deformations of the carbon–carbon dou-
ble bonds, through compression in the unit cell along
the c-axis:

Elastic modulus ¼
Z

2kx0

a2 c� 2x’ð Þ cos h dx0 ð6Þ

Elastic modulus ¼ 2k

a2
cos h

Z
x0

c� 2x’ð Þ dx
0 ð7Þ

Elastic modulus ¼ 2k

a2
cos h

x0

2
� c
22

ln c� 2x0j j
� �

ð8Þ

Elastic modulus ¼ kx0

a2
cosh� 2k

a2
cos h

c
4
ln jc� 2x0j

� �� �

ð9Þ

However, |c�2x¢| = (c�2x¢) for compression, where x¢
corresponds to compression, so:

Elastic modulus ¼ kx0

a2
cos h

� 2k

a2
cos h

c
4
lnðc� 2x0Þ

� �� �
ð10Þ

Upon expanding the logarithm, we obtain the following
power series:

e.m. ¼ kx0

a2
cos h

�
(
2k

a2
cos h

 
c
4

 
� 2x0

c

� �1

� 1

2

2x0

c

� �2

� 1

3

2x0

c

� �3

� . . .

!!)
ð11Þ

Which reduces, essentially, to the correction factor in
Eq. 14:

e:m: ¼ 2kx0

a2
cos h

x0

c

� �0

þ kx0

a2
cos h

x0

c

� �

þ kx0

a2
cos h

4

3

� �
x0

c

� �2

þ . . . ð12Þ

The terms in the power series at (x¢/c)1 and higher,
represent negligible corrections to the zeroth-order term,
at the bond length deformations, x¢, presented in this
paper. Thus, the dynamic stress is given by Eq. 13:

Elastic modulus ¼ 2kx0

a2
cos h ð13Þ

B ¼ B0 þ
2kx0

a2

� �
cos h ð14Þ

Here k is the force constant of the double bond in Nm�1,
x¢ is the deformation of the chemical bond in m; where
the deformation of the bond is given by x¢=(x�xe), here
xe is the equilibrium internuclear distance of the bond, in
m; and a is the basal plane lattice parameter, in m. The
quotient is adjusted for the cosine of the angle between
the chemical bond (in this case, the ethylenic bonds in
the unit cell of glitter) and the crystallographic axis [hkl]
along which is applied the compressive force, this angle
is given by h.

Inspection shows that such a quotient has the
dimensions of a pressure (i.e., a force divided by an area).
Therefore, it is dimensionally consistent with a correction
term to the zero-pressure bulk modulus, B0. The term has
its maximum when h=0� (or 0 radians), this corresponds
to compression along the c-axis. In the previous com-
munication of the ideas in this model, h=0� was just the
case that was considered [2]. Under these assumptions,
the correction to the zero-pressure bulk modulus, B0, for
the elastic deformation of the ethylenic bonds in the unit
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cell of glitter, is calculated to be of the order of 300 GPa
(about 68% of B0) for deformations of the double bonds
of approximately 0.1 Å.

Along the lines of the relation proposed in Eq. 14,
Feynman derived expressions for the elasticity moduli
of a prototype crystal structure in a static model [34].
These elastic moduli were derived by treating the
chemical bonds in the unit of pattern of the structure
as possessing harmonic potentials, similar to the
assumptions adopted in Eq. 14. From Feynman’s der-
ivation within this static model, he obtained expres-
sions for the elastic moduli of the prototype structure,
a cubic rocksalt structure-type, in terms of the ratios of
the force constants, k in Nm�1, of the chemical bonds
in the unit cell, to the lattice parameters, a in m, of the
unit cell. The archetypal expression of the elastic
moduli that Feynman obtained in this analysis is
shown in Eq. 15.

Elastic modulus / k

a
ð15Þ

Such expressions of the elasticity moduli of a crystal
structure, in a static model, are entirely analogous to
expressions like that shown in Eq. 14, where a modulus
of elasticity of a prototype crystal structure is being
calculated in a dynamic model. In the dynamic model
treated in Eq. 14, a strain is produced by deformations
of only a single set of symmetry-equivalent chemical
bonds in the unit of pattern. This strain yields a corre-
sponding dynamic correction stress–elastic modulus,
analogous to the static expressions given in the Feynman
analysis, to the given elasticity modulus.

A derivation of Eq. 14 is provided above. This deri-
vation is based upon defining the correction stress–
elastic modulus to the zero-pressure bulk modulus, B0,
in terms of a function that is the ratio of the forces in the
unit cell produced by chemical bond deformations, to
the corresponding volume deformation of the unit cell
(i.e., F/V). Such a function has the dimensions of a force
density, i.e., Nm�3, and when this quantity is integrated,
it formally produces a dynamic correction term with the
dimensions of a stress, Nm�2. A separate communica-
tion will discuss this derivation more fully, including its
generalization to chemical-bond deformations with dy-
namic strain–stress components along all three Carte-
sian axes of a unit cell.

The basic physical assumptions involved in the pro-
posed expression shown in Eq. 14 for the computation
of the bulk modulus of glitter at pressure, B, are outlined
in the remainder of this section. Figure 9 shows the three
principal parameters that would contribute to correc-
tions to B0 from strains to the volume of the unit cell of
glitter from their deformations.

Bond-angle deformations, distortions of the unit cell
parameter a in Fig. 9, imply the operation of non-central
forces [37]. There is some evidence that bond angles are
preserved to high pressure, up to a phase transition [39].
In this paper, it is assumed that the bond angles,
including the tetrahedral angle not shown in Fig. 9, are
preserved to high pressures.

The carbon–carbon single bonds, shown as the
molecular parameter y in Fig. 9, will deform elastically
under pressure just like the carbon–carbon double
bonds. There will be a component of force, along the
crystallographic axis of interest [hkl], associated with the
deformation of the carbon–carbon single bonds, but this
analysis is more complicated as it involves a continuous
change in the dimensions of the a and c lattice param-
eters of the unit cell simultaneously. Therefore it will be
treated in a separate communication.

Neglecting the above-mentioned contributions to the
correction of the zero-pressure bulk modulus, we focus
on the carbon–carbon double bonds in the unit cell of
glitter. The potential for these bonds will be approxi-
mated by Eq. 16, a harmonic potential [40].

U x0ð Þ ¼ 1

2
kx0

2 ð16Þ

Here k is the force constant for the double bond, in
Nm�1, and x¢ is the deformation from the equilibrium
state, in m, where x¢=(x–xe). A plot of such a potential
is shown in Fig. 10, the steeper the parabolic curve the
larger the force constant. Also note that (kx¢2/2) has the
dimensions of energy, i.e., Nm or J.

Upon taking the derivative with respect to deforma-
tion, x¢, the Hooke’s law force expression is obtained
through the elementary identity shown in Eq. 17:

@U

@x0
¼ kx0 ð17Þ

H H

H H

y

x

Fig. 9 Principal parameters affecting B0 in glitter
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This formula differs from the more familiar expression
of Hooke’s law given by F=–kx¢, in which the Hooke’s
law force is said to be the restoring force of a spring. In
Eq. 16, the Hooke’s law force is written as F=kx¢. When
x¢ is less than zero (i.e., corresponding to compression)
the force is negative, or opposite in direction to the
applied force. Therefore, the sign of the Hooke’s law
force merely represents a chosen reference frame (i.e., set
of axes) for the Hooke’s spring system under consider-
ation.

Note kx¢ has the dimensions of a force, N, and that
this force is produced in compression or tension (in
tension, x¢ = (x�xe), is positive) and is linear with
deformation. This linearity is an important characteris-
tic of a harmonic potential3. When the harmonic spring
or bond is in compression, this corresponds to excur-
sions up the left side of Fig. 10 and the deformation,
x¢=(x�xe) is negative, and vice versa for the spring or

bond in tension. Figure 11 shows a plot of @U
@x0 versus x¢.

The plot shows the linearity of the force explicitly.
What is required in order to analyze the correction to

the zero-pressure bulk modulus for elastic deformation,
is the sum of the forces for deformation through a dis-
tance x¢. Taking the second derivative with respect to
deformation will yield the force constant. When this
latter expression is integrated through the deformation
distance, the sum of the forces will result; we show this
elementary operation in order to illustrate the principle
here to anticipate the non-linear, anharmonic integra-
tion described in the following section. Thus, we will
obtain the elementary identity shown in Eq. 18.

Zx0¼x�xe

x0¼0

@2U

@x02

� �
dx0 ¼ kx0

x0 ¼ x� xe
x0 ¼ 0

				 ð18Þ

Assuming that compression occurs along the c-axis of
the unit cell of glitter, dimensional analysis suggests that
a force divided by an area can be obtained by adding
together the forces on each of the 2 carbon–carbon
double bonds in compression, and dividing by the area
of the (001) plane, which is normal to the compression
force4. Such a correction term, as originally proposed in
Eq. 14, is shown in Eq. 19 for the case of a compression
force directed parallel to the c-axis. This is the correction
term for harmonic compression. The angle between the
compression force and the axes of the carbon–carbon
double bonds in the unit cell of glitter, is 0 radians.

B ¼ B0 þ
2kx0

a2
cos 0o ð19Þ

With k equal to 960 Nm�1, [41] and a equal to
2.53·10�10 m, [1] it is straightforward to calculate B for
the elastically deformed glitter lattice. The corrections
are tabulated below. One can see from such tabulation
that the dynamic stresses associated with the deforma-
tion of the double bonds in glitter are considerable
in this model, approaching the magnitude of the
zero-pressure bulk modulus, B0.

Fig. 10 Harmonic potential function

3Strictly speaking, the Hooke’s potential is termed harmonic be-
cause upon solving for the equation of motion involving the
Hooke’s potential (i.e., a mass attached to a Hooke’s law spring), a
second order differential equation is obtained, x¢¢ + x2x = 0,
which on solution results in a sinusoidal equation of motion, x(t)

4Dimensional analysis has been used extensively by scientists (a
leading reference would be given by, Bridgman PW (1949) The
physics of high pressure, 1st edn. Bell G Sons, Boston; and the
references therein) to estimate the bulk moduli of crystalline
materials, including inert-gas solids, alkali halide crystals, metals
and covalent solids. Typically, the bulk modulus of a given material
is estimated from the ratio of the internal energy of the unit cell of
the material to the unit cell volume, U/V. Such a ratio has the
dimensions of a pressure, so it is consistent with a measure of the
bulk modulus. In the present paper, an alternative dimensionally
consistent ratio to the ratio U/V, one that reflects the mechanism
by which the bulk modulus is increased by elastic deformation of
the unit cell, is proposed. Like U/V, this latter ratio, which is in
terms of F/A; where F is the force produced in elastic deformation
and A is the area of a given crystallographic plane (hkl) normal to
that force, is dimensionally consistent with a factor in the com-
putation of the total bulk modulus of a material.
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Anharmonic compression

Based upon the foregoing analysis of the correction to
the zero-pressure bulk modulus of glitter, B0, due to
harmonic compression of the ethylenic bonds in the unit
cell, a similar analysis is presented in this section by
treating the ethylenic bonds as anharmonic springs.
Figure 9 shows the relevant unit cell parameters which
could contribute to volume strain in the glitter structure.
As in the harmonic approximation, the parameters a and
y are assumed to stay fixed under compression parallel
to the c-axis of the unit cell within the anharmonic
approximation. The reasons for these assumptions have
been described in Sect. 6.

Morse introduced an anharmonic potential-energy
function to describe the vibrational characteristics of
chemical bonds between atom pairs in a molecule in
1929 [42, 43]. This potential function is shown in Eq. 20,
where De is the dissociation energy of the atom pair
considered, in Nm (or J), and, a, is an empirical-fitting

parameter which is,
ffiffiffiffiffiffi
k

2De

q
; where k is the force constant

of the atom pair in Nm�1. For the carbon–carbon
double bonds considered in the unit cell of glitter, the
dissociation energy is approximated by Eq. 21 from
experimental data on an ethylene fragment [44].

U(x’ ) = De(1� e�ax
0
)2 ð20Þ

CH2 ¼ CH2 ! 2 : CH2 � 733
kJ

mol
ð21Þ

With such a potential-energy function, Morse was able
to solve the diatomic molecular Schrödinger equation
exactly, and the vibrational levels for a given electronic
state were found to agree quite closely with empirical
measurements.

Dimensional analysis indicates that the fitting
parameter, a, has the dimensions of m�1. It can be
thought of as a characteristic reciprocal length associ-
ated with a chemical bond. Upon expanding the qua-
dratic, it is clear that as a becomes arbitrarily larger, the
value of the exponential diminishes rapidly and the po-
tential approaches a constant value of De. The potential
energy curve becomes extremely shallow. Conversely,
when the dissociation energy is large compared to the
force constant, a approaches arbitrarily smaller values
and the potential function becomes arbitrarily steep,
even for small deformations x¢.

Fortunately, the parameter, a, is of the order
1010 m�1 for typical chemical bonds. Therefore, this
parameter is of the inverse magnitude as that of typical
deformations of chemical bonds, x¢, in m. For instance,
the value of the characteristic reciprocal length for the
carbon–carbon single bond is, a=8.26·1010 m�1, and
that for the carbon–carbon double bond is,
a=1.98·1010 m�1 [45, 46]. Therefore, it is clear that the
force constant, k, becomes larger simultaneously as 2De

increases, which is physically reasonable. With charac-
teristic reciprocal lengths of approximately a=1010 m�1,
the Morse potential takes on the appearance of the curve
in Fig. 12.

In this diagram, the harmonic potential energy
function, shown in Fig. 10, is superimposed upon the
anharmonic potential energy function [40]. It is assumed
in this diagram that the force constants, k, for the har-
monic and anharmonic potentials, are identical, so their
characteristics can be compared.

For small deformations about the ground vibrational
state of the ground electronic state, deformations from

Fig. 12 The Morse potential

Fig. 11 ¶U/¶x¢ versus x¢ for harmonic potential
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the equilibrium internuclear distance, xe, the two curves
correspond to each other, both being parabolic with a
potential energy close to its minimum value. At rela-
tively reasonable deformations of the given atom pair,
on the order of 0.05·10�10 m, it is clear the two curves
separate. For an atom pair in tension, the right side of
Fig. 12, the potential for the anharmonic spring is
smaller than that of the harmonic spring; and in fact, the
anharmonic spring converges to a value, U(x¢)=De, at
large deformations in tension of the order of the bond
length of the atom pair.

For an atom pair in compression, the left side of
Fig. 12, it is clear that both curves diverge to infinity at
large deformations x¢, but it is also clear that the
instantaneous slope (i.e., the value of ¶U/¶x¢) of the
anharmonic potential is increasingly much steeper than
that of the harmonic potential, for larger and larger
compressions of the given atom pair. In fact, the
instantaneous slope of the harmonic potential,

@ kx
02

2 =@x0; has been shown in the previous section to be
linear in x¢, while the instantaneous slope of the Morse
potential, shown in Fig. 13, is non-linear in x¢. Note that
@U
@x0 in Eq. 22 has the dimensions of a force, N.

@U

@x0
¼ 2Dea e�ax

0 � e�2ax
0

� �
ð22Þ

From Fig. 12 and Eq. 22, it is obvious that under the
assumptions given in the previous section for corrections
to the zero-pressure bulk modulus for compression of
the carbon–carbon double bonds along the c-axis in the
unit cell of glitter, the Morse’s force law will give larger
corrections than the Hooke’s force law.

It can be seen from the Morse’s force law function,

@U x0ð Þ
@x0 ; that the two inverse exponential functions, e–ax¢

and e–2ax¢, control the magnitude of the force. Both of
these functions are plotted in Fig. 14.

The functions have the same asymptotic behavior.
For negative x¢, they diverge to infinity and for positive

x¢ they converge to 0. All this is consistent with Fig. 13.
It can be seen that the difference function in the Morse’s
force law, (e–ax¢�e–2ax¢), diverges under compression
much more rapidly than the simple deformation, x¢, that
occurs in the linear Hooke’s law force. And unlike the
Hooke’s law force, in the Morse’s force law the differ-
ence term (e–ax¢�e–2ax¢) converges to zero for positive x¢
(i.e., for tension). This latter feature of the Morse’s force
law ensures that dissociation occurs for the given
chemically bonded atom pair at tensions of the order of
the bond length of the atom pair.

We may obtain an expression that has the dimensions
of a force constant (i.e., Nm–1) for a Morse’s law force
by differentiating the Morse potential twice (i.e., @

2U

@x02
; Þ:

@

@x0
@U

@x0

� �
¼ k 2e�2ax

0 � e�ax
0

� �
ð23Þ

This expression indicates the change of the Morse’s law
force constant with bond length deformation x¢. In the
harmonic approximation, the force constant is a con-
stant characteristic of the chemical bond, k.

Ultimately, it is desired that the sum of the forces
produced by anharmonic compression of the two eth-
ylenic bonds (modeled here as anharmonic springs) in
the unit cell of glitter, under the assumptions outlined in
the previous section, be divided by the basal plane area
(i.e., a2, where a is the lattice parameter of glitter), to
obtain the dynamic correction term to B0. Therefore, if
we integrate Eq. 23, we will calculate the sum of the non-
linear, anharmonic compression forces acting along a
given deformation x¢. This is shown by the elementary
identity in Eq. 24 below:

Table 5 Corrections to the zero-pressure bulk modulus, B0, from
anharmonic compression of the double bonds in the glitter lattice

deformation,
x¢, in m

(e-ax¢�e�2ax¢) 1506(e-ax¢�e�2ax¢)
cos p, (B�440)
in GPa

�0.010 · 10�10 �0.0203926 30.711
�0.020 · 10�10 �0.0420300 63.297
�0.030 · 10�10 �0.0649546 97.820
�0.040 · 10�10 �0.0892147 134.35
�0.050 · 10�10 �0.1149023 173.04
�0.060 · 10�10 �0.1420618 213.94
�0.070 · 10�10 �0.1707702 257.18
�0.080 · 10�10 �0.2010979 302.85
�0.090 · 10�10 �0.2331187 351.07
�0.100 · 10�10 �0.2669093 401.96
�0.110 · 10�10 �0.3025603 455.65
�0.120 · 10�10 �0.3401358 512.24
�0.130 · 10�10 �0.3797438 571.89
�0.140 · 10�10 �0.4214661 634.72
�0.150 · 10�10 �0.4654088 700.90

Fig. 13 The Morse’s force law
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Zx0¼x�xe

x0¼0

@2U

@x02

� �
dx0¼2Dea e�ax

0 �e�2ax0
� �

x0¼ x�xeð Þ
x0¼0

				
ð24Þ

Finally, in order to obtain the corrections to B0, we
evaluate the quotient that occurs in the expression for B
below in Eq. 25a. This quotient resembles that first
introduced in the previous Section, except the Hooke’s
law force, F=kx¢, is replaced with the non-linear Morse’s
law force, given by the relation F=2Dea(e

-ax¢�e�2ax¢).

B ¼ B0 þ
2
Rx0¼x�xe

x0¼0

@2U

@x02

� �
dx0

a2
cos 0o ð25aÞ

B ¼ B0 þ
2 2Dea e�ax

0 � e�2ax
0� �� � x0 ¼ x� xeð Þ

x0 ¼ 0

				
a2

cos 0o

ð25bÞ
Table 5 lists the relevant parameters for evaluating the
dynamic correction stress–elastic modulus to the zero-
pressure bulk modulus in the anharmonic approxima-
tion.

Conclusions

The elastically deformed glitter lattice may undergo an
increase in stiffness of between 300 GPa and 400 GPa
for a 3% decrease in DV/V, if compression is applied
parallel to the c-axis of the unit cell and applied exclu-
sively to the elastic deformation of the carbon–carbon
double bonds in the unit cell. For a volume deformation
corresponding to a 5% decrease in DV/V, if compression
is applied parallel to the c-axis under these assumptions,
the corresponding increase in stiffness is between

450 GPa and 700 GPa. In the anharmonic approxima-
tion, this brings the bulk modulus at pressure, B, to a
total value of 1.14 TPa, almost an order of magnitude
beyond the zero-pressure bulk modulus of glitter5
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